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Abstract 
 

Cluster computing, whereby a large number of simple 
processors or nodes are combined together to 
apparently function as a single powerful computer, has 
emerged as a research area in its own right.   The 
approach offers a relatively inexpensive means of 
providing a fault-tolerant environment and achieving 
significant computational capabilities for high-
performance computing applications.  However, the task 
of manually managing and configuring a cluster quickly 
becomes daunting as the cluster grows in size.   
Autonomic computing, with its vision to provide self-
management, can potentially solve many of the 
problems inherent in cluster management.   We describe 
the development of a prototype Autonomic Cluster 
Management System (ACMS) that exploits autonomic 
properties in automating cluster management and its 
evolution to include reflex reactions via pulse 
monitoring. 
 

1. Introduction 
 
NASA Goddard Space Flight Center (GSFC) conducts 
research and development in a wide range of topics and 
areas in the field of information technology.   These 
include areas such as advanced knowledge management, 
data/information visualization, semantic-web and sensor-
web technologies, and grid computing, amongst others. 

The primary aim of this research is to support NASA 
missions and projects.   This includes applications that 
involve the collection and management of extremely 
large datasets and the use of very complex models for 
manipulating and interpreting science data collected by 
various NASA instruments and missions. 

The successful completion of GSFC’s science data 
and information processing objectives often entails the 
solution of large distributed computational problems, 
such as the management and simulation of complex 

Earth-modeling systems. Many of these problems are so 
computationally demanding that some form of High 
Performance Computing (HPC) is essential [3]. 

In an increasingly cost-focused environment, less 
expensive options are now needed.  We report on 
continuing work on providing HPC through a cluster, its 
requirement to be self-managing, and the ongoing efforts 
to achieve this autonomicity. 
 

2.  Cluster Computing to Provide HPC 
 
Traditionally, Massively Parallel Processing (MPP) 
computer systems have been used to meet high 
performance computing requirements.  MPP computers 
may contain hundreds or thousands of processors within 
a single computer system.  Typically, upgrading such 
systems requires a complete rebuild of the system.  They 
are, however, relatively simple to manage, and they 
certainly perform very well. A recent trend in high 
performance computing research has been to find new 
approaches to overcome the cost and scalability issues 
associated with MPP systems, such as clusters and grids. 

The concept of a cluster is to take two or more 
computers and organize them to work together to 
provide higher availability, reliability and scalability. 
When failure occurs, resources can be redirected and the 
workload can be redistributed.  As such, a cluster is 
composed of a collection of inexpensive individual 
computers, referred to as ‘nodes’, that are connected 
together via a network and configured so as to appear to 
the user as a single powerful computer.   However, the 
approach opens up an arena of different complexity 
challenges in terms of management, configuration, and 
security.  Rather than administering a single computer, 
management and configuration tasks on a cluster must 
be performed on every node.  As a consequence, 
Autonomic Computing is particularly relevant. 

 



 

3. Autonomic Cluster Management 
 

Autonomic computing offers the potential of solving 
many of the problems inherent in cluster management.  

By definition, an autonomic system is one that, at a 
minimum, exhibits the self-managing properties of being 
self-configuring, self-optimizing, self-healing, and self-
protecting, through self-awareness and environment 
awareness [1].  Like the autonomic nervous system of 
the human body, an autonomic system should react to 
events without conscious thought, but rather as a reflex 
[2].  Using this initial set of autonomic properties as a 
guide, we have designed and implemented a prototype 
Autonomic Cluster Management System (ACMS).   
 
 

3.1 Autonomic properties 
 

Obviously the main autonomic properties required in a 
cluster system to provide continual load balancing are 
self-configuration and self-optimization.  Self-healing is 
critical to ensure dependability, continuity of 
availability, and reliability.  Self-protection is utilized to 
safeguard the cluster system from misuse; this is 
especially vital when one considers that nodes may be 
end-user machines distributed throughout the 
organization [3]. 

Self- and environmental awareness are achieved by 
virtue of the properties of agents, viz. being autonomous, 
reactive, goal-driven and temporally continuous [7]. 
 
 
3.2 The ACMS Prototype 
 
The ACMS is a mobile agent system composed of a 
number of agent processes communicating across a 
network of nodes. The system consists of three types of 
agents, each with functionality implementing autonomic 
system properties, namely General Agents, Optimization 
Agents, and Configuration Agents.   

Specifically, the ACMS is comprised of two 
Configuration Agents and one Optimization Agent per 
implementation, and two General Agents per node.  

Each agent is designed to be specific-purpose, and to 
perform a particular task.  The community of agents 
collaborates to achieve a common goal, specifically 
providing autonomic management of a cluster, while 
simultaneously maximizing performance by 
implementing load-balancing techniques on the system. 

Figure 1 illustrates the architecture of the prototype 
system. 

 

 
  Figure 1.  Architecture of the Prototype 
 
3.2.1 Configuration Agent 
 
The purpose of the Configuration Agent (CA) is to 
provide the ability to self-configure within the system, 
providing  self-healing and self-protecting facilities. 

Its functionality consists of maintaining a current list 
of all the agents in the system and making this 
information available to other agents upon request.   

When an agent first comes on-line it broadcasts to the 
CA’s multicast address stating that it has joined the 
system.  The CA examines the table to ensure that the 
new agent is needed (e.g., an unneeded third CA 
attempting to come on-line, in which case a termination 
message is sent back to the agent).   

In addition, the CA cycles through the database of 
agents asking each if it is still functioning properly.  If 
the CA is incapable of establishing a connection with an 
agent, it is assumed that the agent is no longer 
functioning correctly and will be restarted.  Otherwise, 
the agent responds with a list of information such as the 
address and port number, agent type, and its system 
statistics (processor speed, number of processors, total 
memory, free memory, etc.).  This list of information can 
be easily expanded to include requests for other 
information, in the future, if necessary.  When the CA 
receives this information it updates the database. 

The system contains both a primary and a secondary 
CA to support redundancy and the self-healing 
autonomic property.  Ideally, the two CAs would be on 
different nodes in the system so that if one node stops 
responding there would be at least one CA still 
functioning.  The reason for redundancy is that the 
database is stored in memory locally by the CA.  
Therefore, if the CA stops functioning for any reason, all 



 

the information would be lost.  The secondary CA 
synchronizes with the primary one and maintains a copy 
of the database. Only the primary CA performs system 
configuration tasks.  However, if the primary CA were to 
stop functioning, the secondary one would be able to 
continue in the role of the primary CA.  In this case the 
Optimization Agent would detect that there was only one 
CA functioning and recreate a second CA.  
 
 
3.2.2 Optimization Agent 
 
The purpose of the Optimization Agent (OA) is to make 
the system self-optimizing.  The role of the OA within 
the system is first to contact the CA for a current copy of 
the database.  Once received, the OA begins analysis of 
the database to ensure that there are the correct number 
and types of agents in the system.   

If it finds the configuration to be incorrect, it sends 
commands to create or kill one or more agents, 
stabilizing the system.  After performing a brief analysis 
of the system, it then begins observing the loads and 
statistics of each node, noting the lightly and heavily 
loaded nodes.   

When an application needs to start a new process, the 
OA searches for the first node that is not heavily loaded.  
It contacts a General Agent on that node and commands 
it to start the requested process.  The OA has the 
capability to move agents and processes from one node 
to another, allowing for load balancing of processes.   

No redundancy is built in to the OA because it does 
not store any important information.  If the agent were to 
stop responding, the CA could easily recreate it.  The 
only loss that occurs is any analysis of the table that the 
previous OA had completed. 
 
 
3.2.3 General Agent  
 
The main function of each General Agent (GA) is to 
execute the commands sent to it by the other agents.   

These commands are either to start or stop processes 
running on its node, to spawn a new agent, or to 
terminate itself.  Termination gives the CA and OA the 
ability to start any type of agent on any node in the 
system.  Redundancy is built into the GAs. 

  The reason is not to preserve data, but to ensure that 
a node will remain part of the system.  If there were only 
one GA on a node, and that agent stopped responding, 
the entire node would be disconnected from the system.  
However, if there are two GAs per node and one fails, 
the remaining agent can recreate the failed GA.  Once 
again this behavior satisfies the self-healing autonomic 
property, reducing the need for human maintenance and 
intervention. 

3.2.4 System Topology 
 
Our prototype system utilizes a hybrid centralized and 
decentralized design, as shown in Figure 2. 

The system acts in a centralized manner, all 
information being contained in the Primary CA.   

The database which is maintained contains 
information regarding all extant agents in the system.  
Since all information is held in one location, the system 
becomes easily maintainable and coherent.   

However, fault tolerance is handled in a decentralized 
manner.  Data is redundant with both a primary and 
secondary CA.  Also, there is replication of agents if any 
fail or are shutdown.   

Decentralized systems can be insecure because nodes 
can join at any point and start sending data that may be 
incorrect.  However, all message transfer in our 
prototype is encrypted.  Therefore, any node that joins 
the system would not be able to communicate with other 
agents unless the correct certificates were used.   
 

 
  Figure 2.  System Topology 
 

Although the system’s decentralized topology creates 
some security challenges, this type of topology 
facilitates scalability.  Any new nodes with the correct 
certificates can join the system and immediately begin 
communicating with other agents. 

 

3.2.5 Network Communication 
 

The communications system is important in any 
distributed or clustered system, but its role in an 
autonomic system is of even greater significance.   



 

In addition to providing a mechanism for transferring 
data across a network, our prototype also has to satisfy 
the self-protecting autonomic property.  We originally 
chose to implement this property by encrypting all 
system communication, to reduce the possibility of an 
attacker gaining unauthorized access to system 
commands by monitoring unencrypted network traffic.   

However, in addition to the peer-to-peer 
communication between nodes, we realized that in 
certain cases we would need to broadcast a message to a 
group of agents.  We later discovered that there is 
currently no way of encrypting broadcast messages, 
because broadcasts use the User Datagram Protocol 
(UDP) instead of the connection-oriented Transmission 
Control Protocol (TCP) used by secure protocols.   

We decided that the messages that needed to be 
broadcast to the entire system would not contain any 
sensitive information, so they could be transmitted 
unencrypted. 

Java has built-in support for SSL, a popular and 
trusted method for transferring encrypted data across 
networks. We decided that SSL was sufficient to meet 
the needs for our secure peer-to-peer communication 
because it is capable of using strong 2048-bit 
encryption.  Implementing it would not be much more 
difficult than using standard network communications 
because of the excellent SSL support in Java [6].  We 
chose to use 2048-bit RSA encryption, and generated the 
keystore and truststore files.  The keystore holds our 
private key, and the truststore tells the system to trust 
this key.  These two files must be present on all nodes of 
the system for SSL communication to function. 

Although we needed a method for sending a message 
to multiple agents simultaneously, broadcasting seemed 
inefficient.  It was not necessary for all agents on every 
node to receive a broadcast.  Each message that is sent is 
only destined for a certain group of agents, and a 
broadcast message will never need to be sent to all 
agents in the system.  Since broadcasting to the entire 
system is not necessary, we decided instead to use 
multicasting.   
 
3.2.6 Evaluation of the Prototype  

 
The ACMS prototype has been evaluated both from 

the autonomic management capabilities (seventeen 
operational scenarios - such as hanging of general agent) 
and the performance overhead of the ACMS [3].  While 
achieving the benefits of a cluster, the overhead 
associated with running the ACMS was 5% in the worst-
case (all management agents running on the same node).  
As the number of nodes increased the overhead 
decreased to less than 0.75%. 

 
 

4. Future Work 
 
Part of the motivation behind this work is to 

investigate different autonomic approaches and 
mechanisms and to test these against each other. 

It is planned that in the next version of the ACMS 
(Figure 3) the agents function will be extended to 
include a heartbeat (sending of a periodic ‘I am alive’ 
signal) [8].  This would allow a change in the procedure 
for fault tolerance, as opposed to the current approach 
where the configuration agent polls all the agents. 

 

HeartbeatsH Health Agent
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 Figure 3.  Extending the Architecture 
 

This will also allow the provision of localized fail-over 
on the node; i.e., instead of the current approach of the 
CA noticing an agent has failed (through polling) on a 
remote host and instructing the switch over to the 
secondary agent on that remote host, this can occur 
locally via the secondary agent monitoring the heartbeat 
from the primary agent and thus providing a tighter and 
situated reflex reaction upon failure. 

The primary and secondary CAs will also utilize the 
same mechanism with heartbeats between them 
(typically on separate hosts to increase fault tolerance). 

Self-healing is currently provided for through 
redundant agents and the CA polling the agents.  The 
next version will include a new agent type – a health 
agent.  Its function, in collaboration with the CAs and 
OAs, will be to monitor vital signs on the hosts in an 
attempt to predict if a host is having difficulties and a 
failure is imminent. 

The health agent will be facilitated by pulse 
monitoring – the extension of heartbeat monitoring from 
‘I am alive’ signals to include health information within 
the signal, akin to measuring the pulse [8][9].  In this 
scenario the local agents may fail-over with a new 



 

secondary agent being created, yet if this starts to occur 
frequently this may indicate the host itself is unstable.  
The health agent can  monitor developing scenarios and 
work with the configuration agent to avoid allocating 
work to unstable hosts. 

 
5. Related Work 

 
A HIVE is a software environment built from large 
numbers of dedicated, commodity computers. A HIVE is 
intended for running transaction-based applications [4] 
and provides properties such as self-organizing, self-
healing and self-maintaining.  HIVE is built on the 
principle that all nodes share the workload and if any 
one (or more) fails, then the work is restarted at a 
suitable point and split into as many equal parts as there 
are available nodes. This means that all machines are 
doing the same amount of work but at no time will any 
machine be working at its full potential, thereby 
reducing the risk of operating system failure. 

Microsoft clustering technologies [7] in Windows 
2000 and Windows Server 2003 uses a three-part 
clustering strategy that includes Network Load 
Balancing, designed to address bottlenecks caused by 
front-end Web services; Component Load Balancing, 
designed to address the unique scalability and 
availability needs of middle-tier applications; and Server 
Cluster Load Balancing designed to provide fail-over 
support for back-end applications and services, such as 
provided by database servers.  

IBM’s pSeries has self-configuring features such as 
Reliable, scalable cluster technology (RSCT) and PSSP 
cluster management. 

A server cluster provides high availability by making 
application software and data available on several 
servers linked together in a cluster configuration. If a 
server stops functioning, automated fail-over is provided 
shifting the workload of the failed server to another 
server in the cluster. The fail-over process is designed to 
ensure continuous availability for critical applications 
and data. 

While clusters can be designed to handle failure, they 
are not fault tolerant with regard to user data.  Typically, 
the recovery of lost work is handled by the application 
software. 

 

6. Conclusions  
 

We have described an experimental project to develop a 
prototype Autonomic Cluster Management System, 
suitable for use in cluster-based high-performance 
computing.  The prototype has been evaluated and 
demonstrated to be scaleable.  While the sample space 
for our experimentation was small, we are encouraged 

by seeing a decrease in overhead for the ACMS as the 
cluster size grows, with a simultaneous (almost 100%) 
expansion in processing power.   

Future autonomic extensions of this work will include 
adding a health agent, heartbeat monitoring and pulse 
monitoring. Clusters tend to have (relatively) static 
resources, as opposed to the dynamic nature of the grid.  
As requirements from the scientific community grow in 
the future, this research will likely evolve from an 
autonomic cluster to an autonomic grid.  
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